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Using a resistivity theory based on force-force correlation functions, we estimate for several 
liquid metals the finite-mean-free-path effects arising from the off-diagonal behaviour of the 
Dirac density matrix. The investigation is limited to systems for which an experimental struc- 
ture factor is available and for which a nearly-free-electron treatment of the electron-ion inter- 
action is appropriate. In all cases considered, the inclusion of finite mean-free-path effects 
increases the calculated resistivity; the enhancement varies from - 4 %  in Mg to -27% in 
Li. Discrepancies between experiment and theory remain and some possible reasons for these are 
discussed. 

1 INTRODUCTION 

The widely used Ziman formula’ for the electrical resistivity ( p )  of a nearly- 
free-electron (nfe) liquid metal is 

The two essential ingredients are the liquid structure factor S ( q )  accessible 
from neutron or X-ray scattering experiments, and the screened electron-ion 
pseudopotential form factor V(q, kF) for elastic scattering on the Fermi 
surface. The conduction electron density n is related to the Fermi wave- 
number k ,  by k ,  = ( 3 ~ ~ n ) ” ~ .  0 is the unit step function. rn and e are the 
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116 C. R.  LEAVENS et a1 

electron mass and charge respectively, and Z is the number of conduction 
electrons per ion. 

The assumption of a sharp Fermi surface is implicit in (1.1) because the 
integral over the magnitude of the wavevector transfer q is restricted to the 
range 0 I q I 2kF. However, Eq. (1.1) leads to a finite resistivity and hence 
to a finite transport mean-free-path 

It is therefore of interest to study whether the consequent blurring of the 
Fermi surface implied by the Heisenberg uncertainty principle can be built 
into the theory. This naturally implies transcending the first order time- 
dependent perturbation theory on which Eq. (1.1) rests. 

As a start on such a programme, Ferraz and March (FM)' showed that 
the approach of inverse transport coefficients, based on the force-force 
correlations experienced by electrons in a metal,3 can lead to a natural 
generalization of the nfe formula (1.1). In this generalization the mean-free- 
path 1 is built into the right-hand side via an approximation to the Dirac 
density matrix in which the off-diagonal elements reflect directly the kinetic 
theory result4 for the probability of a given value of I .  The difference between 
1 and l,, is then ignored so that the resistivity is calculated by solving the 
resulting integral equation for I,, and then using Eq. (1.2). 

In this paper we refine the FM approach in two ways: (1) it is extended 
to allow for non-locality in the electron-ion pseudopotential, and (2) the 
mean-free-path to be used in their generalization of (1.1) is determined from 
more fundamental considerations. We then use the modified FM resistivity 
formula to assess the importance of finite mean-free-path effects on the 
electrical resistivity of several liquid metals. 

In Section I1 we summarize the derivation of the expression used for p 
and discuss our choice of input for the calculations. In Section I11 we outline 
the method used to treat the 1 dependence of the dielectric function which 
enters the expression for the electron-ion interaction form factor. Finally, in 
Section IV we present and discuss our results for p in Li, Na, K, Rb, Cs, Mg 
and Al. 

I I  F M  APPROXIMATION FOR p 

The FM method2 for including finite mean-free-path effects is based on the 
force-force correlation function formula for the electrical re~istivity.~,~ If 
we adopt the pseudopotential approach and replace the electron-ion inter- 
action by a non-local but weaker pseudo-interaction, V(r, r'), this expression 
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ELECTRICAL RESISTIVITY OF LIQUID METALS 1 I7 

becomes 

@(r, r’) = C V(r - a, r’ - a), 
U 

(2.ld) 

a labels the ionic sites, V(r, r’) is the non-local screened electron-ion inter- 
action and (0) denotes the configurational average of 0. In Eq. (2.lb) 
{$,,(r)} is the set of eigenfunctions of the Hamiltonian for a given ionic 
configuration. In the weak-scattering limit these eigenfunctions are re- 
placed by plane-waves, o(r, r’) becomes oo( Ir - r’l), and Eq. (1.1) is re- 
covered. To proceed further in the general case we will assume that the F and 
o factors in Eq. (2.1) may be configurationally averaged separately. Upon 
Fourier transforming this yields 

where 

o(k) = dr exp(ik . (r - r’))(o(r, r’)). (2.3) s 
In their treatment FM follow Bardeen4 in writing 

and then identify 1 with ltr. In this work we also adopt Eq. (2.4) but attempt 
to be more quantitative in choosing I by examining the perturbation expan- 
sion for (o(r, r’)). We first note that 

1 

n 
o(r, r’) = - - Im(G(EF + iq)) 

where the Green function G is defined by 
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I18 C.  R. LEAVENS et al. 

Then, following standard perturbative treatments7 of (G) = G we obtain 

G(k, E) = dr exp(ik. (r - r’))(G(r, r‘; E)) = (E - E~ - I: (k, E))-’  (2.7) s 
where 

To obtain an approximate expression for a(k) from Eqs. (2.7) and (2.8) we 
let E = EF, average Eq. (2.8) over k according to the spectral weight of 
G(k, E) at E = EF and then neglect the k-dependence of X (k, EF) for k very 
near the Fermi surface. This leads to 

a(k) = - 

where 

(2.10) 

(2.1 1) 

and 

We note that liml+m 6,(q) = 8(2kF - q)  and liml+m 1 Vfff(q)12 = I V(q, kF)12. 
Equation (2.9) may be compared with the expression obtained by Fourier 
transforming Eq. (2.4) 

- ] (2.13) 
1 

1 + (21(k - kF))’ 1 + (21(k + kF))2 

For k F  1 + 1 and k E k ,  the second term in Eq. (2.13) is negligible compared to 
the first and hence the mean-free-path appearing in this equation should be 
determined by solving Eq. (2.10). This must be done self-consistently since 
1 Vfff(q) 1’ and 6,(q) depend on 1; we denote the solution by I,. 

In terms of Eqs. (2.11) and (2.12), Eq. (2.2) may be rewritten as 

(2.14) 
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ELECTRICAL RESISTIVITY OF LIQUID METALS 119 

This expression differs from that originally suggested by FM' only in that 
(1) the local pseudopotential form-factor has been replaced by the appro- 
priate average of non-local form-factors (Eq. (2.12)) and (2) Eq. (2.14) is to 
be evaluated using the mean-free-path lo obtained from Eq. (2.10) rather 
than by replacing lo on the right-hand side of Eq. (2.14) by 1,, and then 
solving (1.2) and (2.14) self-consistently. The first difference allows us to con- 
sider the many systems for which a local pseudopotential treatment is 
inappropriate while the second can produce important quantative changes. 

It should be noted that in using Eq. (2.14) to evaluate the resistivity we are 
not including all the higher-order effects which occur in Eqs. (2.1). In par- 
ticular we have neglected the k and E dependence of 1 (k, E) near the Fermi 
surface which corresponds to an unmodified diagonal element of the Dirac 
density matrix. This may be serious in metals such as Be and Hg in which the 
dip in the density of states near E ,  which occurs in the solid seems to persist 
in the liquid and in metals, such as Pb, with particularly short mean-free- 
paths. We will return to this point in discussing our results. 

An obvious necessary condition for a significant finite mean-free-path 
correction to p z  is that I, be sufficiently small, i.e. that the scattering of 
electrons be sufficiently strong. However, this is not the entire story-the 
size, and even the sign, of the correction also depends on a subtle competition 
between contributions of opposite sign. This point is most clearly demonstra- 
ted by assuming that the 1 dependence of Vyff(q) is unimportant. (For the 
metals considered here this turns out to be a good approximation.) In this 
case, PFM - p z  is proportional to an integral over all 4 of 

- 411. 

When Eq. (2.13) is substituted for a(k) in (2.1 1) we obtain 

q 3 ~ ( q )  I vcff(q) IZCeio(q) - 

- e(q - J- (2.15) 

Now q3S(q)( VCff(q)l2 2 0 for all q, and it is not difficult to prove that 
[010(4) - 8(2k, - 4)] s 0 for q < 2kF and 20 for 4 > 2k,. Hence, for 
finite l o ,  scattering processes with q < 2kp give a negative contribution to 
pFM - p z  while those with q > 2kF give a positive contribution. Figure 1 
shows [8,,(q) - 8(2kF - q)] for kFl, = 30. The (negative) peak at q = 0 
is not particularly important because both q3 and S(q) are very small in this 
region. For the range of values of k, 1, of interest here, [4,(4) - 8(2k, - q)] 
is otherwise large in magnitude only in the immediate vicinity of 2kF.  
However, the range of important 4 can extend considerably beyond this 
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I20 C. R. LEAVENS et al. 

region because of the large amount of cancellation that can occur there. It is 
clear that in order to obtain a reliable estimate of pFM - pz we must use a 
structure factor and pseudopotential form factor that are accurate, par- 
ticularly for q - 2kF. For this reason we limit the investigation to simple 
liquid metals for which experimental structure factors are available. We 
must further limit these to those for which reliable pseudopotential form 
factors V(k, k) are also available. 

Dagens, Rasolt and Taylor (DRT)' constructed non-local, energy- 
independent pseudopotentials for a number of simple metals by fitting first- 
order perturbation theory calculations of the electronic charge density in- 
duced around an isolated ion in an electron gas to the results of full non- 
linear calculations. (This effectively folds in all multiple scatterings from a 
single ion.) Using the bare electron-ion interaction determined in this way, 
in combination with the dielectric function of Geldart and Taylorg and 
Rasolt's form for the vertex function describing non-locality in the electron- 
electron interaction," has proven a very successful prescription for cal- 
culations of the properties of simple metals in the solid Accurate 
electron-ion pseudopotential form factors VDR.Xk, k), can easily be construc- 
ted following this prescription, for Na and K8, Rb and CsI4, and Li, Mg, and 
A18. 

The experimental liquid structure factors used in our calculations are 
taken from the extensive compilation of Waseda." Since the atomic weights 
of some of the metals, particularly Li, are small we include a correction for 
the inelasticity of the electron-ion scattering processes by replacing S(q) 
in the relevant formulae of this and the previous section by'" 

(2.16) 

where M is the ionic mass. 

Ill DIELECTRIC FUNCTION FOR A FINITE MEAN-FREE- 
PATH 

The non-local pseudopotentials V(k, k) considered in this paper depend on 
I only through the I-dependence of the dielectric function. In considering this 
l-dependence we begin by generalizing .the Lindhard dielectric function to 
include the effect of a finite mean-free-path 1. To proceed consistently with 
Ref. 2, we employ the form of Dirac density matrix used there. In terms of the 
free electron density matrix, 

mk, sin&, I r - r' I) 
nZhZ k,Jr -r'\ ' 

co(r, r', EF) = - 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ELECTRICAL RESlSTIVITY OF LIQUID METALS 

the modified off-diagonal elements are incorporated using the form given 
in Eq. (2.4). 

The dielectric function is then obtained as follows. Consider a test charge 
interacting with the conduction electrons of the liquid metal. The displaced 
charge round the test probe is 

121 

6p(r, E) = 1 dr’F(r, r’, E)V(r’) (3.2) 

where V(r) is the screened test charge potential, while F is the one-body 
linear response function given by” 

aF(r, r‘, E )  
aE 

= 2 Re{G’(r, r’, E)o(r’, r, E)}. (3.3) 

The Green function G is related to the Dirac density matrix by Eq. (2.5). 
However, if we know the imaginary part of G, we can calculate the real part 
from the Kramers-Kronig relation 

dE‘ Im G’(r, r’, E )  
Re G>(r, r’, E )  =f - n E - E  (3.4) 

Hence it follows that 

and thus, in this approximation, the linear response function is simply 

F(r, r‘, k F ,  l )  = F,(r, r’, kF)  exp - ~ ( I r y r ‘ ‘ )  
where F ,  is the free electron response function 

(3.7) 

with , j l ( x )  = sin x - x cos x)/x2. The static dielectric function ~ ( q )  can be 
defined by 

where KXt(q) is the external potential due to the test charge, and 
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I22 C. R. LEAVENS el ul. 

is the electrostatic potential of the system. Here p(q) is the Fourier transform 
(FT) of the displaced charge 6p(r)  of Eq. (3.2). In the Hartree self-consistent 
field approximation, the FT of the total one-body potential V(q)  is simply 
xl(q) .  Hence the generalized Lindhard dielectric function, with account 
taken of a finite mean-free-path 1, is given by 

(3.10) 

where a. is the Bohr radius andfo(q, l )  is (to within a constant factor) the 
FT of the one-electron response function of Eq. (3.6). Using our results it 
follows that 

[I - ( q / 2 k ~ ) ~  + (2kF/)-’] 
8(q/2kF) 

[(ql)’ + 1 + 2kJ7q12]2 + 
In {[(ql)’ + 1 - 2k,q12]’ + (2k,1)2 + 

(3.1 1) 

from which one recovers the Lindhard dielectric function in the limit as 1 
tends to infinity. 

Going beyond the Lindhard function we have included the effects of 
exchange and correlation in an approximate manner by replacing fo(q, l )  
in Eq. (3.10) by the function 

(3.12) 

where 1 = (nuok,)-’. In the large 1 limit Taylor’* has pointed out that 
this dielectric function is a good approximation to that of Geldart and 
Tay10r.~ If we make the reasonable assumption that the 1-dependence of the 
local field effects is small then Eq. (3.12) becomes an obvious generalization 
of the full dielectric function to finite 1. 

For the vertex correction H ( q )  which takes account of non-local electron- 
electron scattering events we use the form of H(q)  suggested by Rasolt,” 
is. 

where Z(EF)  is the quasi-particle renormalization factor. Consistent with the 
local field corrections we take H ( q )  to be independent of 1. We note that 

H(q) = Z(EF)fO(q, O)[Z(EF)- ’ + f(4,  O)- ’ - f ( O ,  O)- ‘1, 
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ELECTRICAL RESISTIVITY OF LIQUID METALS 123 

The relationship of the argument producing Eq. (3.11) to other attempts 
to incorporate scattering effects into the response function deserves some 
attention. Much of the work of which we are aware is based on a relaxation- 
time-approximation for the single-particle density matrix. ''-" As empha- 
sized by Mermin" the static limit of any such approach cannot include the 
effects of Fermi surface blurring, the focus of the present investigation, since 
the assumption of collisions between well-defined quasiparticles is implicit. 
Our approach is similar in spirit to that proposed by de Gennes22 and has 
in common with his results a softening of the singularity in the response 
function at q = 2kF. Mermin's emphasis is on the requirements posed by 
the equation of continuity on the frequency-dependent response functions 
which would have to be taken into account in generalizing Eq. (3.11) to the 
finite-frequency case. (Equation (3.11) is trivially number conserving in the 
o = 0 case.) This, however, is outside the scope of the present investigation 
since aside from the small correction for inelasticity given by (2.16) we are 
only concerned with transport calculations in a frozen-liquid-approximation. 

IV RESULTS AND DISCUSSION 

The results of our resistivity calculations are summarized in Table I. For each 
of the liquid metals considered we find that PFM > p z ,  the enhancement 
varying from - 4 % in Mg (953 K) to - 27 % in Li (463 K). This is contrary 
to the suggestion made in Ref. 2 that pFM must be less than p z .  The reasoning 
behind this suggestion is not correct. The difference between PFM and p z  can 

TABLE I 

The electrical resistivities calculated with the Ziman formula (1.1) and the modified 
Ferraz-March formula (2.14) are compared for several liquid metals. The mean-free- 
path lo appearing in the FM resistivity integral is compared with the corresponding 

transport mean-free-path I , ,  

Li(463 K) 25.1" 13.9 17.7 27 66 62 
Na(378 K) 9.7" 10.2 10.9 1 81 125 

Rb(313 K) 22.6" 28.2 29.9 6 59 51 

Mg(953 K) 25Sb 21.5 22.4 4 33 41 

K(343 K) 14.3" 15.9 16.9 6 72 99 

Cs(303 K) 37.1" 29.2 33.3 14 61 54 

Al(943 K) 24.4' 19.5 20.5 5 27 35 

a T. C. Chi, J .  Phys. Chem. Ref: Dura 8(2), 339 (1979). 
P. D. Feitsma, T. Lee, and W. van der Lugt, Physica, 938, 52 (1978). 
N. E. Cusack, Report on Progress in Physics XXVI, 361 (1963). 
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FIGURE 1 
and the change of sign at q = 2kF occurs for any finite value of k,l. 

The q dependence of O,(q) - O(2kF - q )  for k,l = 30. The discontinuity of + 1 

be of either sign depending on the q dependence of S(q)  and of VFf (q), par- 
ticularly for q - 2kF.  Since S(q)  and V;:(q) are not completely independent 
quantities (e.g. they are both strongly influenced by the electronic screening) 
it is an interesting question whether or not, for any actual system, they can 
be such that pz > PFM. 

With Figure 1 and the related discussion in Section I1 in mind it is not 
difficult to account for the fact that the mean-free-path effect is much larger 
in Li than in Mg. For Li, with Z = 1, the structure factor S(q) is large and 
very rapidly increasing at q = 2kF thus favouring a positive contribution to 
pFM - pz; for Mg, with Z = 2, S(q)  is large and very rapidly decreasing at 
q = 2kF thus favouring a negative contribution. For Mg the factor 
q3 1 V;f(q) 1’ which gives stronger weight to the positive contribution evi- 
dently wins, but the net effect is much smaller than in Li where S(q)  and 
q3 I ~ f ( q )  I2 act in concert near q = 2kF. 

The effect of switching off the 1 dependence of the dielectric function 
E o ( q ,  I )  is, in all cases, to reduce PFM by only a small fraction of the total mean- 
free-path enhancement. The effect is so small because the resistivity in- 
tegrand is very small near q = 0 where the difference between ~ ~ ( q ,  1) and 
Eo(q ,  1 = a) is most pronounced. Moreover, the Z-dependence of V;f(q)  
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ELECTRICAL RESISTIVITY OF LIQUID METALS 125 

induced by averaging V(k, k’) with an /-dependent weight factor is un- 
important relative to the I-dependence of 8,(q). This justifies the sim- 
plifying assumption made to facilitate the discussion of Section I1 and the 
preceding paragraph. 

Figures 2 and 3 show Vff(q), the correct effective local pseudopotential 
form factor to be used in the FM resistivity formula, for Li and Cs respec- 
tively. They were calculated from VDRT(k, k )  using Eq. (2.12). Also shown are 
two earlier guesses: 

vit)(q) = 8(2kF - q ) v D R T ( k ,  k ’ ) k = k ’ = k F  + 8(q - 2 k , ) V D R d k ,  k ) k = k ’ = q / 2 ,  

(4.1) 

(4.2) 
with k’ = k + q. Both of these guesses give a good representation of Vrf (q )  
for q c 2kF but fail badly for q > 2kF. We have been unable to devise any 
simple prescription for generating a good approximation to Vff(q > 2k,). 
From the behaviour of O,,(q) for q > 2k, (see Figure 1) it might erroneously 

Vf:)(q) = 8(2kF - q)T/,RT(k, k ) k = k ‘ = k F  + e(q - 2kF)vDRdk? k ) k = k p , k ‘ = q - k F ,  

I I I 

0 I 2 3 
q/ k F  

FIGURE 2 The solid curve represents V;f(q) ,  the effective local electron-ion pseudopotential 
form factor to be used in the modified Ferraz-March resistivity formula, for Li at 463 K. The 
dotted and dashed curves show two guesses, Vl:’(q) and VI:)(q) respectively, for V;f(q). 
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126 C. R. LEAVENS e t a / .  

FIGURE 3 The solid, dotted, and dashed curves represent V f ( q ) ,  Vj,"(q), and Yf:)(q) respec- 
tively for Cs at 303 K. 

be concluded that the q-dependence of V;;,ff(q) for q % 2kF is of negligible 
importance. However, the leading order term in an expansion of O,,,(q) in 
powers of (kF lo)- ' and (q/2kF)- ' is n- '(kF lo)- '(q/2kF)- '. This means that 
for kFIo % 1 and q 9 2kF the integrand of Eq. (2.14) for pFM is proportional 
to &lo)- ' I V::(q)l2. Thus the convergence of the resistivity integral depends 
on the large q behaviour of 1 V;f(q)I2 which is represented so poorly by 
(4.1) and (4.2). Calculation of pFM for Li with Vj!)(q) in place of the correct 
V:,&) leads to a correction to pz which is too large by a factor of 2. If, in 
addition, lo is replaced by I,, (with I,, determined self-consistently as originally 
suggested by FM) the correction is too large by a further factor of 2. These 
comments emphasize the necessity of using a first principles pseudopotential, 
which may be highly non-local, in estimating the finite-mean-free-path 
effects. 

It is of interest to ask whether the present approach can meaningfully 
be applied to liquid metals with particularly short mean-free-paths, such 
as liquid Pb and Hg. In such a case, the approximate form (3.2) of the Dirac 
density matrix has to be transcended to include the distortion of the diagonal 
density of states due to the strong scattering potentials. The Bardeen form 
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ELECTRICAL RESISTIVITY OF LIQUID METALS I27 

(3.2) only modifies the density matrix relatively far from the diagonal, and 
does not change the density of states from its free electron form. Since such a 
modified density of states may well play an important role in determining 
the transport properties of liquid Pb and Hg, it seems clear that the umost 
caution should be used before applying (2.14) to such a metal. This is borne 
out by our calculation for Pb (613 K):23 despite a finite mean-free-path 
enhancement of 20%, pFM is smaller than pexp by over 50%. (In this case, a 
significant part of the discrepancy may arise from our use of the DRT foim 
factor which is much less reliable for Pb than for the metals considered in 
Table I.) 

The comparison with experimental resistivities in Table I makes it clear 
that some, but not dramatic, improvement in agreement results from our 
inclusion of finite-mean-free-path effects. At the present time the extent to 
which uncertainties in the experimental structure factors are obscuring this 
comparison is somewhat uncertain; certainly both pz and pFM are very 
sensitive to the form assumed for S(q).24 Among the possible sources of 
error in the formula we have used, the omission of density-of-state modifica- 
tions due to the electron-ion interaction, mentioned earlier, seems easiest 
to remove. However, for the metals listed in Table I, sizable effects would be 
expected only in Li and Cs in which cases the calculated values of p would be 
expected to increase." This would leave us in a situation in which all the 
calculated resistivities in the liquid alkali metals would be above experimental 
values by -20%. This situation is particularly puzzling for Na and K since 
the corresponding solid state calculations," which appear to be based on 
similar physical approximations, yield agreement on the -4% level. In 
fact the inclusion of the effect of multiphonon processes and the Debye- 
Waller factor improves the agreement to the 1% thus demonstrating 
that the DRT form factors are entirely appropriate for the calculation of 
transport properties. Therefore, if one can be confident in the accuracy of the 
experimental structure factors, it seems that the discrepancies noted in 
Table I are a reflection of errors introduced by the assumption (implicit in 
the derivations of both pz and pFM) that the scattering function for the 
electrons only depends on the ionic configuration in an average sense (see the 
discussion of Ref. 5). In any case, our results establish that finite-mean-free- 
path effects alter significantly the calculated electrical resistivity of several 
liquid simple metals from that given by the Ziman formula. 
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